Write down Einstein's photoelectric equation. Photons of energies 1 eV and 2.5 eV respectively are incident on a metal plate of work function 0.5 eV. If maximum kinetic energies of emitted photoelectrons are \( k_1 \) and \( k_2 \) respectively and their velocities are \( v_1 \) and \( v_2 \), then find the magnitudes of (i) \( k_1/k_2 \) and (ii) \( v_1/v_2 \).
Focal length of each lens is 10 cm as shown in the given figure. Find the distance of the image of point object O from the convex lens and also draw the ray diagram. If both lenses are placed in contact, what will be the power of the combined lens?
State the required conditions for the interference of light. Find the value of maximum resultant intensity of two waves having intensities \( I \) and \( 4I \), when sources are (i) coherent and (ii) non-coherent.
A monochromatic ray of light is incident at an angle of \( 45^\circ \) on the face AB of a right-angled prism (\( A = 90^\circ \)), as shown in the figure. The emergent ray is refracted tangentially from the face AC. Find out the refractive index of the prism material.
What are Kirchhoff's two laws for the electrical circuit? Find out the reading of the ammeter with the help of the given circuit, while its resistance is negligible.