Let \( P(A') \), \( P(B') \), and \( P(C') \) denote the probabilities of A, B, and C failing, respectively.
We are given:
\[
P(\text{At least one passes}) = 1 - P(A' \cap B' \cap C') = \frac{3}{4}
\Rightarrow P(A' \cap B' \cap C') = \frac{1}{4}
\]
Given:
\[
P(A) = \frac{1}{2} \Rightarrow P(A') = \frac{1}{2}, \quad P(C) = \frac{1}{4} \Rightarrow P(C') = \frac{3}{4}
\]
So,
\[
P(A') \cdot P(B') \cdot P(C') = \frac{1}{4} \Rightarrow \frac{1}{2} \cdot P(B') \cdot \frac{3}{4} = \frac{1}{4}
\Rightarrow P(B') = \frac{1}{4} \cdot \frac{2}{1} \cdot \frac{4}{3} = \frac{2}{3}
\]