Question:

Three participants – Akhil, Bimal and Chatur participate in a random draw competition for five days. Every day, each participant randomly picks up a ball numbered between 1 and 9. The number on the ball determines his score on that day. The total score of a participant is the sum of his scores attained in the five days. The total score of a day is the sum of participants’ scores on that day. The 2-day average on a day, except on Day 1, is the average of the total scores of that day and of the previous day. For example, if the total scores of Day 1 and Day 2 are 25 and 20, then the 2-day average on Day 2 is calculated as 22.5. Table 1 gives the 2-day averages for Days 2 through 5.
Table 1: 2-day averages for Days through 5
Day 2Day 3Day 4Day 5
1515.51617
Participants are ranked each day, with the person having the maximum score being awarded the minimum rank (1) on that day. If there is a tie, all participants with the tied score are awarded the best available rank. For example, if on a day Akhil, Bimal, and Chatur score 8, 7 and 7 respectively, then their ranks will be 1, 2 and 2 respectively on that day. These ranks are given in Table 2. 
Table 2 : Ranks of participants on each day
 Day 1Day 2Day 3Day 4Day 5
Akhil12233
Bimal23211
Chatur31122
The following information is also known. 
1. Chatur always scores in multiples of 3. His score on Day 2 is the unique highest score in the competition. His minimum score is observed only on Day 1, and it matches Akhil’s score on Day 4. 
2. The total score on Day 3 is the same as the total score on Day 4. 
3. Bimal’s scores are the same on Day 1 and Day 3.
What is the minimum possible total score of Bimal? (This Question was asked as TITA)

Updated On: Sep 17, 2024
  • 27
  • 25
  • 20
  • 23
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The value of a can be \(\frac{4}{5}\), and the value of b can be \(\frac{2}{1}\).

Let's consider this following table:

 Day 1Day 2Day 3Day 4Day 5Total Score
Akhil7\(\frac{4}{b}\)b3\(\frac{3}{4}\)23/24/25
Bimal5\(\frac{2}{1}\)57\(\frac{7}{8}\)27/26/25
Chatur3966630
Total Score151516161880

From the table, we can see that the  minimum possible total score of Bimal will be 25.

So, the correct option is (B): 25.

Was this answer helpful?
0
0

Top Questions on Table

View More Questions

Questions Asked in CAT exam

View More Questions