Let’s analyze the forces acting on each block.
For the system as a whole (masses \(M_1\), \(M_2\), and \(M_3\) together) moving upwards with an acceleration \(a = 2 \, \mathrm{m/s^2}\):
Total mass, \(M = M_1 + M_2 + M_3 = 4 + 6 + 10 = 20 \, \mathrm{kg}.\)
Total weight, \(W = Mg = 20 \times 10 = 200 \, \mathrm{N}\)
Since the entire system is accelerating upwards, the net force \(F\) required to produce this acceleration is given by:
\(F = Ma = 20 \times 2 = 40 \, \mathrm{N}\)
Thus, the tension \(T_1\) in rope 1 must support both the weight and the additional force required for acceleration:
\(T_1 = W + F = 200 + 40 = 240 \, \mathrm{N}\)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: