The least count of the screw gauge is:
\[\text{Least count} = \frac{\text{Pitch}}{\text{Number of divisions on circular scale}} = \frac{1 \, \text{mm}}{100} = 0.01 \, \text{mm}.\]
The zero error is given as:
\[\text{Zero error} = +0.05 \, \text{mm}.\]
The reading is calculated as:
\[\text{Reading} = (\text{Linear scale reading}) \times (\text{Pitch}) + (\text{Circular scale reading}) \times (\text{Least count}) - \text{Zero error}.\]
Substitute:
\[\text{Reading} = (4 \times 1) \, \text{mm} + (60 \times 0.01) \, \text{mm} - 0.05 \, \text{mm}.\]
Simplify:
\[\text{Reading} = 4.00 \, \text{mm} + 0.60 \, \text{mm} - 0.05 \, \text{mm} = 4.55 \, \text{mm}.\]
Thus, the diameter of the wire is:
\[4.55 \, \text{mm}.\]
The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: