To determine the diameter of the wire using the screw gauge, we need to follow these steps:
Conclusion: The diameter of the wire is 4.55 mm. Thus, the correct answer is 4.55 mm.
The least count of the screw gauge is:
\[\text{Least count} = \frac{\text{Pitch}}{\text{Number of divisions on circular scale}} = \frac{1 \, \text{mm}}{100} = 0.01 \, \text{mm}.\]
The zero error is given as:
\[\text{Zero error} = +0.05 \, \text{mm}.\]
The reading is calculated as:
\[\text{Reading} = (\text{Linear scale reading}) \times (\text{Pitch}) + (\text{Circular scale reading}) \times (\text{Least count}) - \text{Zero error}.\]
Substitute:
\[\text{Reading} = (4 \times 1) \, \text{mm} + (60 \times 0.01) \, \text{mm} - 0.05 \, \text{mm}.\]
Simplify:
\[\text{Reading} = 4.00 \, \text{mm} + 0.60 \, \text{mm} - 0.05 \, \text{mm} = 4.55 \, \text{mm}.\]
Thus, the diameter of the wire is:
\[4.55 \, \text{mm}.\]

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.