The least count of the screw gauge is:
\[\text{Least count} = \frac{\text{Pitch}}{\text{Number of divisions on circular scale}} = \frac{1 \, \text{mm}}{100} = 0.01 \, \text{mm}.\]
The zero error is given as:
\[\text{Zero error} = +0.05 \, \text{mm}.\]
The reading is calculated as:
\[\text{Reading} = (\text{Linear scale reading}) \times (\text{Pitch}) + (\text{Circular scale reading}) \times (\text{Least count}) - \text{Zero error}.\]
Substitute:
\[\text{Reading} = (4 \times 1) \, \text{mm} + (60 \times 0.01) \, \text{mm} - 0.05 \, \text{mm}.\]
Simplify:
\[\text{Reading} = 4.00 \, \text{mm} + 0.60 \, \text{mm} - 0.05 \, \text{mm} = 4.55 \, \text{mm}.\]
Thus, the diameter of the wire is:
\[4.55 \, \text{mm}.\]
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: