Step 1: Recall the definition of Z-transform.
For a sequence \(x[n]\), the Z-transform is defined as
\[
X(Z) = \sum_{n=0}^{\infty} x[n] Z^n.
\]
Step 2: Write the given sequence.
The sequence is \(\{1, 0, 1, 0, 1\}\), i.e.:
\[
x[0] = 1, \quad x[1] = 0, \quad x[2] = 1, \quad x[3] = 0, \quad x[4] = 1.
\]
Step 3: Apply the Z-transform formula.
\[
X(Z) = x[0]Z^0 + x[1]Z^1 + x[2]Z^2 + x[3]Z^3 + x[4]Z^4
\]
\[
= (1)(1) + (0)Z + (1)Z^2 + (0)Z^3 + (1)Z^4
\]
\[
= 1 + Z^2 + Z^4.
\]
\[
\boxed{1 + Z^2 + Z^4}
\]