The y-intercept of the graph between the terminal voltage \(V\) with load resistance \(R\) along \(y\) and \(x\) – axis, respectively, of a cell with internal resistance \(r\), as shown, is:
The terminal voltage \(V\) of a cell can be expressed by the equation: \[ V = \varepsilon - Ir \] where \(I\) is the current through the cell. When \(R \rightarrow \infty\) (open circuit condition), \(I = 0\), and thus \(V = \varepsilon\).
Therefore, the y-intercept of the graph is the emf of the cell, \(\varepsilon\).
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: