The conductivity \(\sigma\) of the semiconductor can be calculated using the formula:
\[
\sigma = e (n \mu_n + p \mu_p)
\]
where \(e\) is the elementary charge (\(1.6 \times 10^{-19}\) C), \(n\) and \(p\) are the concentrations of electrons and holes, and \(\mu_n\) and \(\mu_p\) are their mobilities. Given \(n = p = 1.1 \times 10^{10}\) cm\(^{-3}\), \(\mu_n = 1500\) cm\(^2\)/Vs, and \(\mu_p = 500\) cm\(^2\)/Vs:
\[
\sigma = (1.6 \times 10^{-19}) \times (1.1 \times 10^{10} \times 1500 + 1.1 \times 10^{10} \times 500)
\]
\[
\sigma = (1.6 \times 10^{-19}) \times (1.1 \times 10^{10} \times 2000) = 3.52 \times 10^{-4} { S/cm} = 3.52 \times 10^{-6} \, \mu{mho cm}^{-1}
\]