For diatomic gas, the degrees of freedom \( f = 5 \) (at room temperature), and for monoatomic gas \( f = 3 \).
Using the equipartition theorem: \[ {Total KE for diatomic} = 3 { moles} \times \frac{5}{2} R T = \frac{15}{2} R T \] \[ {Total KE for monoatomic} = n { moles} \times \frac{3}{2} R T \] Equating the two energies: \[ \frac{15}{2} R T = \frac{3}{2} R T \times n \implies n = 5 \]