We are given the positions and masses of three particles:
The x-coordinate of the center of mass of the system is given by the formula: \[ x_{\text{cm}} = \frac{\sum m_i x_i}{\sum m_i} \] Where: - \( m_i \) is the mass of each particle, - \( x_i \) is the x-coordinate of each particle. Substituting the given values: \[ x_{\text{cm}} = \frac{m \cdot 0 + 2m \cdot 1 + 3m \cdot (-2)}{m + 2m + 3m} \] Simplifying: \[ x_{\text{cm}} = \frac{0 + 2m - 6m}{6m} = \frac{-4m}{6m} = \frac{-2}{3} \] Thus, the x-coordinate of the center of mass is \( \frac{-2}{3} \).
Correct Answer: (D) \( \frac{-2}{3} \)
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.