The work done in increasing the surface area of a soap bubble is given by:
\[ W = T \Delta A \]
where \( T \) is the surface tension and \( \Delta A \) is the change in surface area.
The surface area of a soap bubble is given by \( A = 2 \times 4\pi r^2 \) since it has two surfaces.
Given:
\begin{itemize}
\item Initial diameter \( d_1 = 2 \) cm, so initial radius \( r_1 = 1 \) cm \(= 0.01 \) m
\item Final diameter \( d_2 = 4 \) cm, so final radius \( r_2 = 2 \) cm \(= 0.02 \) m
\item Surface tension \( T = 3.5 \times 10^{-2} \) Nm\(^{-1}\)
\end{itemize}
Initial surface area:
\[ A_1 = 2 \times 4\pi r_1^2 = 8\pi (0.01)^2 = 8\pi \times 10^{-4} \text{ m}^2 \]
Final surface area:
\[ A_2 = 2 \times 4\pi r_2^2 = 8\pi (0.02)^2 = 8\pi \times 4 \times 10^{-4} = 32\pi \times 10^{-4} \text{ m}^2 \]
Change in surface area:
\[ \Delta A = A_2 - A_1 = 32\pi \times 10^{-4} - 8\pi \times 10^{-4} = 24\pi \times 10^{-4} \text{ m}^2 \]
Work done:
\[ W = T \Delta A = 3.5 \times 10^{-2} \times 24\pi \times 10^{-4} \]
\[ W = 84\pi \times 10^{-6} \]
\[ W \approx 84 \times 3.14 \times 10^{-6} \]
\[ W \approx 263.76 \times 10^{-6} \text{ J} \]
This is approximately \( 264 \times 10^{-6} \) J.
Final Answer: (2) \(264\times10^{-6}\) J