electric flux
magnetic potential
electric potential
gravitational potential
Step 1: Electric potential (\( V \)) at a point is defined as the work done per unit charge to bring a positive test charge from infinity to that point.
\[ V = \frac{W}{q}. \] Step 2: This potential depends on the electric field but not on the path taken, as electrostatic forces are conservative.
A 10 $\mu\text{C}$ charge is placed in an electric field of $ 5 \times 10^3 \text{N/C} $. What is the force experienced by the charge?
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R
Assertion A: Work done in moving a test charge between two points inside a uniformly charged spherical shell is zero, no matter which path is chosen.
Reason R: Electrostatic potential inside a uniformly charged spherical shell is constant and is same as that on the surface of the shell.
In the light of the above statements, choose the correct answer from the options given below
Electric charge is transferred to an irregular metallic disk as shown in the figure. If $ \sigma_1 $, $ \sigma_2 $, $ \sigma_3 $, and $ \sigma_4 $ are charge densities at given points, then choose the correct answer from the options given below:
The slope of the tangent to the curve \( x = \sin\theta \) and \( y = \cos 2\theta \) at \( \theta = \frac{\pi}{6} \) is ___________.
Solve the following L.P.P. by graphical method:
Maximize:
\[ z = 10x + 25y. \] Subject to: \[ 0 \leq x \leq 3, \quad 0 \leq y \leq 3, \quad x + y \leq 5. \]