A thermodynamic system is taken through a cyclic process as shown in the PV diagram. The total work done in the process is:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
Work is the product of the component of the force in the direction of the displacement and the magnitude of this displacement.
W = Force × Distance
Where,
Work (W) is equal to the force (f) time the distance.
W = F d Cos θ
Where,
W = Amount of work, F = Vector of force, D = Magnitude of displacement, and θ = Angle between the vector of force and vector of displacement.
The SI unit for the work is the joule (J), and it is defined as the work done by a force of 1 Newton in moving an object for a distance of one unit meter in the direction of the force.
Work formula is used to measure the amount of work done, force, or displacement in any maths or real-life problem. It is written as in Newton meter or Nm.