The correct option is (C): 26.16 kg
To find the weight of the solid cone, we can use the formula for the volume of a cone and then multiply it by the density of the material.
Steps to Solve:
1. **Formula for the Volume of a Cone**:
\[V = \frac{1}{3} \pi r^2 h \]
Where:
\( r \) = radius of the cone
\( h \) = height of the cone
2. Given Values:
- Diameter = 14 cm, so the radius \( r = \frac{14}{2} = 7 \) cm
- Height \( h = 51 \) cm
- Density of the material = 10 grams/cm³
3. Calculating the Volume:
\[V = \frac{1}{3} \pi (7^2)(51)\]
\[V = \frac{1}{3} \pi (49)(51)\]
\[V = \frac{1}{3} \pi (2499)\]
\[V \approx \frac{1}{3} \times 3.14 \times 2499\]
\[V \approx \frac{1}{3} \times 7847.86 \approx 2615.95 \, \text{cm}^3\]
4. Calculating the Weight:
\[\text{Weight} = \text{Volume} \times \text{Density}\]
\[\text{Weight} = 2615.95 \, \text{cm}^3 \times 10 \, \text{grams/cm}^3\]
\[\text{Weight} \approx 26159.5 \, \text{grams}\]
5. Converting grams to kilograms:
\[\text{Weight} \approx \frac{26159.5}{1000} \approx 26.16 \, \text{kg}\]
Conclusion:
The weight of the solid cone is approximately 26.16 kg.