The wavefunction of a particle in one dimension is given by \[ \psi(x) = \begin{cases} M, & \text{for } -a < x < a, \\ 0, & \text{otherwise}. \end{cases} \] Here $M$ and $a$ are positive constants. If $\varphi(p)$ is the corresponding momentum space wavefunction, which one of the following plots best represents $|\varphi(p)|^2$?
A
B
C
D
Match the LIST-I with LIST-II
LIST-I (Energy of a particle in a box of length L) | LIST-II (Degeneracy of the states) | ||
---|---|---|---|
A. | \( \frac{14h^2}{8mL^2} \) | I. | 1 |
B. | \( \frac{11h^2}{8mL^2} \) | II. | 3 |
C. | \( \frac{3h^2}{8mL^2} \) | III. | 6 |
Choose the correct answer from the options given below:
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is: