Balmer series involves transitions $n_2 \to n_1=2$.
Wave number $\bar{\nu} = R \left( \frac{1}{2^2} - \frac{1}{n_2^2} \right)$.
First line ($3 \to 2$): $\bar{\nu}_1 = R (\frac{1}{4} - \frac{1}{9}) = R \frac{5}{36}$.
Second line ($4 \to 2$): $\bar{\nu}_2 = R (\frac{1}{4} - \frac{1}{16}) = R \frac{3}{16}$.
Third line ($5 \to 2$): $\bar{\nu}_3 = R (\frac{1}{4} - \frac{1}{25}) = R \frac{21}{100}$.