The volume of the parallelepiped formed by three vectors \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \) is given by the scalar triple product:
\[
V = \left| \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) \right|.
\]
Step 1: Compute the cross product \( \overrightarrow{b} \times \overrightarrow{c} \):
\[
\overrightarrow{b} = 3i + j - k, \quad \overrightarrow{c} = 5i + 2j - 7k.
\]
The cross product is:
\[
\overrightarrow{b} \times \overrightarrow{c} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & -1 \\
5 & 2 & -7
\end{vmatrix}.
\]
Using the determinant formula:
\[
= \hat{i} \begin{vmatrix} 1 & -1 \\ 2 & -7 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -1 \\ 5 & -7 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix}.
\]
This simplifies to:
\[
= \hat{i} \left( 1(-7) - (-1)(2) \right) - \hat{j} \left( 3(-7) - (-1)(5) \right) + \hat{k} \left( 3(2) - 1(5) \right)
\]
\[
= \hat{i} \left( -7 + 2 \right) - \hat{j} \left( -21 + 5 \right) + \hat{k} \left( 6 - 5 \right)
\]
\[
= -5\hat{i} + 16\hat{j} + \hat{k}.
\]
Thus,
\[
\overrightarrow{b} \times \overrightarrow{c} = -5\hat{i} + 16\hat{j} + \hat{k}.
\]
Step 2: Compute the dot product \( \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) \):
\[
\overrightarrow{a} = i - j + k.
\]
Now, take the dot product:
\[
\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = (i - j + k) \cdot (-5\hat{i} + 16\hat{j} + \hat{k}).
\]
This gives:
\[
= 1(-5) + (-1)(16) + 1(1) = -5 - 16 + 1 = -20.
\]
Step 3: The volume is the absolute value of this result:
\[
V = \left| -20 \right| = 20.
\]
Thus, the volume of the parallelepiped is 20 cubic units.
Therefore, the correct answer is option (B).