5000 m/s
The root mean square (rms) speed of a gas molecule is given by:
$$ v_{\text{rms}} = \sqrt{\frac{3kT}{m}} $$ or alternatively, $$ v_{\text{rms}} = \sqrt{\frac{3RT}{M}} $$ where:
$R$ = gas constant,
$T$ = temperature in Kelvin,
$M$ = molar mass of the gas.
For nitrogen ($\text{N}_2$), molar mass $M \approx 28 \, \text{g/mol} = 0.028 \, \text{kg/mol}$,
At room temperature, $T \approx 300\, \text{K}$
Now, $$ v_{\text{rms}} = \sqrt{\frac{3 \times 8.314 \times 300}{0.028}} \approx \sqrt{26614.29} \approx 516\, \text{m/s} $$
Correct answer: (d) 500 m/s
\[ v_{rms} = \sqrt{\frac{3 \times (1.38 \times 10^{-23} \text{ J/K}) \times (293 \text{ K})}{4.65 \times 10^{-26} \text{ kg}}} \]
\[ v_{rms} = \sqrt{\frac{1.213 \times 10^{-20}}{4.65 \times 10^{-26}}} \approx \sqrt{0.261 \times 10^6} \approx \sqrt{2.61 \times 10^5} \text{ m/s} \]
\[ v_{rms} \approx 510 \text{ m/s} \]
\[ v_{rms} = \sqrt{\frac{3 \times (1.38 \times 10^{-23} \text{ J/K}) \times (300 \text{ K})}{4.65 \times 10^{-26} \text{ kg}}} \]
\[ v_{rms} = \sqrt{\frac{1.242 \times 10^{-20}}{4.65 \times 10^{-26}}} \approx \sqrt{0.267 \times 10^6} \approx \sqrt{2.67 \times 10^5} \text{ m/s} \]
\[ v_{rms} \approx 517 \text{ m/s} \]
The velocity of nitrogen molecules in room temperature air is closest to 500 m/s.
The correct option is (d) 500 m/s.
Solvent | Boiling Point (K) |
---|---|
Chloroform | 334.4 |
Diethyl Ether | 307.8 |
Benzene | 353.3 |
Carbon disulphide | 319.4 |