Using de Broglie relation:
\[
\lambda = \frac{h}{mv}
\]
Given:
\[
m = 9 \times 10^{-31} \, \text{kg}, \quad v = x \times 10^6 \, \text{m/s}, \quad h = 6.6 \times 10^{-34} \, \text{Js}
\]
Substitute:
\[
\lambda = \frac{6.6 \times 10^{-34}}{9 \times 10^{-31} \cdot x \times 10^6}
= \frac{6.6}{9x} \times 10^{-9} \, \text{m}
= \frac{0.73}{x} \, \text{nm}
\]
So, when \( x = 1 \), the wavelength is 0.73 nm.