Question:

The velocity of the electron in Bohr’s first orbit is \( x \times 10^6 \, \text{ms}^{-1} \). The deBroglie wavelength associated with it (in nm) is (Given: \( m_e = 9 \times 10^{-31} \, \text{kg}, \, h = 6.6 \times 10^{-34} \, \text{Js} \))

Show Hint


Use de Broglie’s equation \( \lambda = \frac{h}{mv} \) and convert to nanometers.
Always double-check the unit consistency—especially when switching from m to nm.
Updated On: May 19, 2025
  • \( \frac{x}{1.43} \)
  • \( \frac{x}{0.73} \)
  • 0.73
  • \( \frac{0.073}{x} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Using de Broglie relation: \[ \lambda = \frac{h}{mv} \] Given: \[ m = 9 \times 10^{-31} \, \text{kg}, \quad v = x \times 10^6 \, \text{m/s}, \quad h = 6.6 \times 10^{-34} \, \text{Js} \] Substitute: \[ \lambda = \frac{6.6 \times 10^{-34}}{9 \times 10^{-31} \cdot x \times 10^6} = \frac{6.6}{9x} \times 10^{-9} \, \text{m} = \frac{0.73}{x} \, \text{nm} \] So, when \( x = 1 \), the wavelength is 0.73 nm.
Was this answer helpful?
0
0