The correct option is(B): 2.7%.
According to the question,
\(v\propto\sqrt{\frac{T}{\mu}} = k \sqrt{\frac{T}{\mu}}\)
As \(\mu = \frac{M}{L}\) and \(T = m' g\)
\(\Rightarrow v = k\sqrt{\frac{TL}{M}} = k \sqrt{\frac{m'gL}{M}}\)
\(\Rightarrow \frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta m'}{m'} + \frac{1}{2} \frac{\Delta L}{L} + \frac{1}{2} \frac{\Delta M}{M}\)
\(= \frac{1}{2}\times \frac{0.1}{5} + \frac{1}{2} \times \frac{1\times 10^{-3}}{1} + \frac{1}{2} \times \frac{0.1}{3}\)
\(= 0.01 + 0.0005 + 0.016\)
\(= 0.0271 = 2.7 \%\)
The physical world includes the complications of the natural world around us. It is a type of analysis of the physical world around us to understand how it works. The fundamental forces that control nature are: