Step 1: Recall that the divergence of a vector field \(\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}\) is
\[
\nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}.
\]
Step 2: Identify the components:
\[
v_x = zx,\quad v_y = 2xy,\quad v_z = 3yz.
\]
Step 3: Compute partial derivatives.
\[
\frac{\partial v_x}{\partial x} = \frac{\partial (zx)}{\partial x} = z,
\]
\[
\frac{\partial v_y}{\partial y} = \frac{\partial (2xy)}{\partial y} = 2x,
\]
\[
\frac{\partial v_z}{\partial z} = \frac{\partial (3yz)}{\partial z} = 3y.
\]
Step 4: Add them:
\[
\nabla \cdot \vec{v} = z + 2x + 3y.
\]
Step 5: Substitute \((x,y,z) = (3,2,1)\):
\[
\nabla \cdot \vec{v} = 1 + 2(3) + 3(2) = 1 + 6 + 6 = 13.
\]
Step 6: Correct divergence value is \(\boxed{13}\).
Hence the correct option is (D).