Given: Points \( A(2, 1, 3) \) and \( B(-2, 4, 1) \)
Step 1: Find the direction vector
The direction vector is given by:
\[ \overrightarrow{AB} = B - A = (-2 - 2, 4 - 1, 1 - 3) = (-4, 3, -2) \]
Step 2: Write the vector equation of the line
The vector equation of the line passing through point \( A(2, 1, 3) \) with direction vector \( \overrightarrow{AB} = (-4, 3, -2) \) is:
\[ \overrightarrow{r} = \overrightarrow{A} + \lambda \overrightarrow{AB} \] \[ \overrightarrow{r} = 2\hat{i} + \hat{j} + 3\hat{k} + \lambda(-4\hat{i} + 3\hat{j} - 2\hat{k}) \]
Final Answer:
\[ \overrightarrow{r} = 2\hat{i} + \hat{j} + 3\hat{k} + \lambda(-4\hat{i} + 3\hat{j} - 2\hat{k}) \]