270 $g mol^{-1}$
340 $g mol^{-1}$
Given:
Raoult's Law:
\[ \frac{P^0 - P_{\text{solution}}}{P^0} = \frac{n_{\text{solute}}}{n_{\text{solute}} + n_{\text{solvent}}} \]
Let molar mass of solute = \( M \)
Then, moles of solute = \( \frac{1}{M} \)
Moles of benzene = \( \frac{39}{78} = 0.5 \)
Now, plug values into the formula:
\[ \frac{0.850 - 0.845}{0.850} = \frac{1/M}{1/M + 0.5} \Rightarrow \frac{0.005}{0.850} = \frac{1}{1 + 0.5M} \]
\[ 0.00588 = \frac{1}{1 + 0.5M} \Rightarrow 1 + 0.5M = \frac{1}{0.00588} \approx 170.07 \Rightarrow 0.5M = 169.07 \Rightarrow M \approx \mathbf{338.14 \, g/mol} \]
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: