270 $g mol^{-1}$
340 $g mol^{-1}$
Given:
Raoult's Law:
\[ \frac{P^0 - P_{\text{solution}}}{P^0} = \frac{n_{\text{solute}}}{n_{\text{solute}} + n_{\text{solvent}}} \]
Let molar mass of solute = \( M \)
Then, moles of solute = \( \frac{1}{M} \)
Moles of benzene = \( \frac{39}{78} = 0.5 \)
Now, plug values into the formula:
\[ \frac{0.850 - 0.845}{0.850} = \frac{1/M}{1/M + 0.5} \Rightarrow \frac{0.005}{0.850} = \frac{1}{1 + 0.5M} \]
\[ 0.00588 = \frac{1}{1 + 0.5M} \Rightarrow 1 + 0.5M = \frac{1}{0.00588} \approx 170.07 \Rightarrow 0.5M = 169.07 \Rightarrow M \approx \mathbf{338.14 \, g/mol} \]