Step 1: Condition for an obtuse angle
The angle \( \theta \) between two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfies:
\[
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}.
\]
For the angle to be obtuse:
\[
\mathbf{a} \cdot \mathbf{b}<0.
\]
Step 2: Compute dot product
The dot product is:
\[
\mathbf{a} \cdot \mathbf{b} = (x\hat{i} + 2\hat{j} + \hat{k}) \cdot (-\hat{i} + 2\hat{j} + x\hat{k}).
\]
Expanding:
\[
= x(-1) + 2(2) + 1(x).
\]
\[
= -x + 4 + x = 4.
\]
Step 3: Find \( x \) for obtuse angle
Since the dot product \( 4 \) is always positive, there are no values of \( x \) that satisfy \( \mathbf{a} \cdot \mathbf{b}<0 \).
Thus, the interval is:
\[
(0,3).
\]
Step 4: Conclusion
Thus, the correct answer is:
\[
\boxed{(0,3)}
\]