Question:

The value of
16C9 + 16C10- 16C6 - 16C7 is

Updated On: Apr 2, 2025
  • 0
  • 1
  • 17C10
  • 17C3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The value of 16C9+16C1016C616C7^{16}C_9 + ^{16}C_{10} - ^{16}C_6 - ^{16}C_7 is

We use the property nCr=nCnr^nC_r = ^nC_{n-r}.

  • 16C9=16C7^{16}C_9 = ^{16}C_7
  • 16C10=16C6^{16}C_{10} = ^{16}C_6

Therefore, 16C9+16C1016C616C7=16C7+16C616C616C7=0^{16}C_9 + ^{16}C_{10} - ^{16}C_6 - ^{16}C_7 = ^{16}C_7 + ^{16}C_6 - ^{16}C_6 - ^{16}C_7 = 0

 

Alternatively, using Pascal's identity nCr+nCr1=n+1Cr^nC_r + ^nC_{r-1} = ^{n+1}C_r:

16C9+16C10=17C10^{16}C_9 + ^{16}C_{10} = ^{17}C_{10}

16C6+16C7=17C7^{16}C_6 + ^{16}C_7 = ^{17}C_7

So the expression becomes 17C1017C7=17C717C7=0^{17}C_{10} - ^{17}C_7 = ^{17}C_7 - ^{17}C_7 = 0

Answer: (A) 0

Was this answer helpful?
0
0