The value of 16C9+16C10−16C6−16C7 is
We use the property nCr=nCn−r.
- 16C9=16C7
- 16C10=16C6
Therefore, 16C9+16C10−16C6−16C7=16C7+16C6−16C6−16C7=0
Alternatively, using Pascal's identity nCr+nCr−1=n+1Cr:
16C9+16C10=17C10
16C6+16C7=17C7
So the expression becomes 17C10−17C7=17C7−17C7=0
Answer: (A) 0