The value of \(^{16}C_9 + ^{16}C_{10} - ^{16}C_6 - ^{16}C_7\) is
We use the property \(^nC_r = ^nC_{n-r}\).
Therefore, \(^{16}C_9 + ^{16}C_{10} - ^{16}C_6 - ^{16}C_7 = ^{16}C_7 + ^{16}C_6 - ^{16}C_6 - ^{16}C_7 = 0\)
Alternatively, using Pascal's identity \(^nC_r + ^nC_{r-1} = ^{n+1}C_r\):
\(^{16}C_9 + ^{16}C_{10} = ^{17}C_{10}\)
\(^{16}C_6 + ^{16}C_7 = ^{17}C_7\)
So the expression becomes \(^{17}C_{10} - ^{17}C_7 = ^{17}C_7 - ^{17}C_7 = 0\)
Answer: (A) 0
Using the property $ { }^{n}C_k = { }^{n}C_{n-k} $, we rewrite:
$$ { }^{16}C_9 + { }^{16}C_{10} - { }^{16}C_6 - { }^{16}C_7 = { }^{16}C_7 + { }^{16}C_6 - { }^{16}C_6 - { }^{16}C_7. $$
Simplify:
$$ { }^{16}C_7 + { }^{16}C_6 - { }^{16}C_6 - { }^{16}C_7 = 0. $$