Question:

The value of
16C9 + 16C10- 16C6 - 16C7 is

Updated On: Apr 9, 2025
  • 0
  • 1
  • 17C10
  • 17C3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

The value of \(^{16}C_9 + ^{16}C_{10} - ^{16}C_6 - ^{16}C_7\) is

We use the property \(^nC_r = ^nC_{n-r}\).

  • \(^{16}C_9 = ^{16}C_7\)
  • \(^{16}C_{10} = ^{16}C_6\)

Therefore, \(^{16}C_9 + ^{16}C_{10} - ^{16}C_6 - ^{16}C_7 = ^{16}C_7 + ^{16}C_6 - ^{16}C_6 - ^{16}C_7 = 0\)

 

Alternatively, using Pascal's identity \(^nC_r + ^nC_{r-1} = ^{n+1}C_r\):

\(^{16}C_9 + ^{16}C_{10} = ^{17}C_{10}\)

\(^{16}C_6 + ^{16}C_7 = ^{17}C_7\)

So the expression becomes \(^{17}C_{10} - ^{17}C_7 = ^{17}C_7 - ^{17}C_7 = 0\)

Answer: (A) 0

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Using the property $ { }^{n}C_k = { }^{n}C_{n-k} $, we rewrite:

$$ { }^{16}C_9 + { }^{16}C_{10} - { }^{16}C_6 - { }^{16}C_7 = { }^{16}C_7 + { }^{16}C_6 - { }^{16}C_6 - { }^{16}C_7. $$

Simplify:

$$ { }^{16}C_7 + { }^{16}C_6 - { }^{16}C_6 - { }^{16}C_7 = 0. $$

Was this answer helpful?
0
0