Let the vector field be $\mathbf{F} = (2x + z) \mathbf{i} + (2x + z) \mathbf{j} + (2z + y) \mathbf{k}$. The surface integral can be written as $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$. Since $S$ is a closed surface (a sphere), we can use the Divergence Theorem:
$$\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_V (\nabla \cdot \mathbf{F}) \, dV$$
where $V$ is the volume enclosed by the sphere $x^2 + y^2 + z^2 = 9$.
First, calculate the divergence of $\mathbf{F}$:
$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(2x + z) + \frac{\partial}{\partial y}(2x + z) + \frac{\partial}{\partial z}(2z + y) = 2 + 0 + 2 = 4$$
Next, calculate the volume of the sphere $x^2 + y^2 + z^2 = 9$. The radius of the sphere is $R = \sqrt{9} = 3$. The volume of a sphere is given by $V = \frac{4}{3} \pi R^3$.
$$V = \frac{4}{3} \pi (3)^3 = \frac{4}{3} \pi (27) = 36\pi$$
Now, evaluate the volume integral:
$$\iiint_V (\nabla \cdot \mathbf{F}) \, dV = \iiint_V 4 \, dV = 4 \iiint_V dV = 4 \times ({Volume of the sphere})$$
$$\iiint_V 4 \, dV = 4 \times 36\pi = 144\pi$$
Thus, the value of the surface integral is $144\pi$.