Step 1: Understanding the Concept:
This problem requires solving four different equations in the complex domain and matching them to the correct description or set of roots.
Step 2: Detailed Explanation:
(A) \((z + 1)^{2n} + (z - 1)^{2n} = 0\):
This implies \(\left(\frac{z+1}{z-1}\right)^{2n} = -1 = e^{i(2k+1)\pi}\).
So, \(\frac{z+1}{z-1} = e^{i\frac{(2k+1)\pi}{2n}}\). Let this ratio be \(w\).
Since \(|w|=1\), solving gives
\[
z = \frac{w+1}{w-1}.
\]
If \(w = \cos\theta + i\sin\theta\), then simplifying leads to
\[
z = -i \cot\left(\tfrac{\theta}{2}\right).
\]
The roots are purely imaginary.
(A) matches (II).
(B) \( z^5 + z^4 + z^3 + z^2 + z + 1 = 0 \):
This is the sum of a geometric series:
\[
\frac{z^6-1}{z-1} = 0 \implies z^6=1, \; z\neq 1.
\]
Thus, roots are the 6th roots of unity excluding 1.
\[
z = e^{i2\pi k/6}, \; k=1,2,3,4,5.
\]
Explicitly:
\[
e^{i\pi/3}, \; e^{i2\pi/3}, \; e^{i\pi}=-1, \; e^{i4\pi/3}, \; e^{i5\pi/3}.
\]
In Cartesian form: \(-1, \pm\tfrac{1}{2} \pm i\tfrac{\sqrt{3}}{2}\).
(B) matches (III).
(C) \( (z-1)^5 + z^5 = 0 \):
This gives
\[
\left(\frac{z-1}{z}\right)^5 = -1 = e^{i(2k+1)\pi}.
\]
So,
\[
1 - \tfrac{1}{z} = e^{i\frac{(2k+1)\pi}{5}}, \quad \frac{1}{z} = 1 - w_k, \quad z = \frac{1}{1-w_k}.
\]
Let \(\theta_k = \tfrac{(2k+1)\pi}{5}\). Simplification gives:
\[
z = \tfrac{1}{2}\left(1+i\cot\left(\tfrac{\theta_k}{2}\right)\right).
\]
Thus,
\[
z = \tfrac{1}{2}\left(1+i\cot\left(\tfrac{p\pi}{10}\right)\right), \; p=1,3,5,7,9.
\]
(C) matches (IV).
(D) \( z^5 + 1 = 0 \):
\[
z^5 = -1 = e^{i\pi}.
\]
So,
\[
z = e^{i\frac{(2k+1)\pi}{5}}, \; k=0,1,2,3,4.
\]
The roots are
\[
e^{i\pi/5}, \; e^{i3\pi/5}, \; e^{i\pi}=-1, \; e^{i7\pi/5}, \; e^{i9\pi/5}.
\]
These correspond to \(-1, \cos(\pi/5)\pm i\sin(\pi/5), \cos(3\pi/5)\pm i\sin(3\pi/5)\).
(D) matches (I).
Step 3: Final Answer:
The correct matching is:
\[
(A)-(II), \quad (B)-(III), \quad (C)-(IV), \quad (D)-(I).
\]
Correct Choice: Option (A).