Step 1: Understanding the Concept:
This is an improper double integral. The integrand \( e^{-x^2/y} \) is difficult to integrate with respect to \(y\). This suggests that changing the order of integration might simplify the problem.
Step 2: Key Formula or Approach:
The region of integration is given by \( 0 \le y \le x \) and \( 0 \le x<\infty \).
This describes the infinite region in the first quadrant between the lines \(y=0\) and \(y=x\).
To change the order of integration, we fix \(y\) first and let \(x\) vary.
- The minimum \(y\) value is 0. The maximum is \(\infty\).
- For a fixed \(y\), \(x\) goes from the line \(x=y\) to \(x=\infty\).
So the new limits are \( y \le x<\infty \) and \( 0 \le y<\infty \).
The integral becomes:
\[ \int_0^\infty \int_y^\infty x e^{-x^2/y} dx \, dy \]
Step 3: Detailed Explanation:
Let's evaluate the inner integral with respect to \(x\):
\[ I_x = \int_y^\infty x e^{-x^2/y} dx \]
Use a u-substitution. Let \( u = -x^2/y \). Then \( du = (-2x/y) dx \), which gives \( x dx = -\frac{y}{2} du \).
Change the limits of integration for \(u\):
- When \( x=y \), \( u = -y^2/y = -y \).
- When \( x \to \infty \), \( u \to -\infty \).
The inner integral becomes:
\[ I_x = \int_{-y}^{-\infty} e^u \left(-\frac{y}{2} du\right) = \frac{y}{2} \int_{-\infty}^{-y} e^u du \]
\[ = \frac{y}{2} [e^u]_{-\infty}^{-y} = \frac{y}{2} (e^{-y} - \lim_{a \to -\infty} e^a) = \frac{y}{2}(e^{-y} - 0) = \frac{y}{2}e^{-y} \]
Now, substitute this result back into the outer integral:
\[ \int_0^\infty \left( \frac{y}{2}e^{-y} \right) dy = \frac{1}{2} \int_0^\infty y e^{-y} dy \]
This is the Gamma function \( \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt \). Here, \(z-1=1\), so \(z=2\).
The integral is \( \frac{1}{2} \Gamma(2) \). Since \( \Gamma(n)=(n-1)! \) for integers \(n\), \( \Gamma(2) = 1! = 1 \).
So the value is \( \frac{1}{2} (1) = \frac{1}{2} \).
Alternatively, we can use integration by parts for \( \int y e^{-y} dy \):
Let \(u=y, dv=e^{-y}dy\). Then \(du=dy, v=-e^{-y}\).
\[ \int y e^{-y} dy = -ye^{-y} - \int (-e^{-y})dy = -ye^{-y} - e^{-y} \]
\[ \int_0^\infty y e^{-y} dy = [-e^{-y}(y+1)]_0^\infty = \lim_{b \to \infty} [-e^{-b}(b+1)] - (-e^0(0+1)) = 0 - (-1) = 1 \]
So the final answer is \( \frac{1}{2}(1) = \frac{1}{2} \).
Step 4: Final Answer:
The value of the integral is \( \frac{1}{2} \).