Step 1: Substitution.
Let $\sqrt{x} = t \Rightarrow x = t^2, \, dx = 2t \, dt$.
Limits: when $x=0, t=0$; when $x=9, t=3$.
Step 2: Substitute into the integral.
\[
\int_{0}^{9} \frac{x - 1}{1 + \sqrt{x}} \, dx = \int_{0}^{3} \frac{t^2 - 1}{1 + t} \times 2t \, dt
\]
\[
= 2 \int_{0}^{3} \frac{t(t^2 - 1)}{1 + t} \, dt = 2 \int_{0}^{3} t(t - 1) \, dt \quad (\text{since } t^2 - 1 = (t - 1)(t + 1))
\]
Step 3: Simplify and integrate.
\[
2 \int_{0}^{3} (t^2 - t) \, dt = 2 \left[ \frac{t^3}{3} - \frac{t^2}{2} \right]_0^3 = 2 \left( 9 - \frac{9}{2} \right) = 2 \times \frac{9}{2} = 9.
\]
Correction check: Wait — algebra simplification step rechecked.
Actually,
\[
\frac{t^2 - 1}{1 + t} = t - 1 + \frac{t}{1+t} - \text{No, expand properly.}
\]
Let’s properly divide $(t^2 - 1)$ by $(1 + t)$:
\[
\frac{t^2 - 1}{1 + t} = t - 1.
\]
Then,
\[
I = 2\int_0^3 t(t-1)\,dt = 2\int_0^3 (t^2 - t)\,dt = 2\left[\frac{t^3}{3} - \frac{t^2}{2}\right]_0^3 = 2(9 - 4.5) = 9.
\]
Step 4: Conclusion.
\[
\boxed{I = 9}
\]
(round to integer).