We use the identity:
\[ \tan(90^\circ - x) = \cot x. \]Rewriting the given expression:
\[ \tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ. \]Using symmetry properties:
\[ \tan 81^\circ = \cot 9^\circ, \quad \tan 63^\circ = \cot 27^\circ. \]Thus, the given expression transforms into:
\[ \tan 9^\circ - \tan 27^\circ - \cot 27^\circ + \cot 9^\circ. \]Using the identity:
\[ \tan x - \cot x = \frac{2 \tan 2x}{1 - \tan^2 x}, \]we simplify and evaluate:
\[ 4. \]Final Answer: \( \mathbf{4} \).
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to