We are given the expression:
\[
\tan^{-1} \left( \frac{x}{y} \right) - \tan^{-1} \left( \frac{x - y}{x + y} \right)
\]
Step 1: Use the formula for the difference of arctangents
We use the standard identity for the difference of two inverse tangents:
\[
\tan^{-1} a - \tan^{-1} b = \tan^{-1} \left( \frac{a - b}{1 + ab} \right)
\]
Let \( a = \frac{x}{y} \) and \( b = \frac{x - y}{x + y} \).
Applying the identity:
\[
\tan^{-1} \left( \frac{x}{y} \right) - \tan^{-1} \left( \frac{x - y}{x + y} \right) = \tan^{-1} \left( \frac{\frac{x}{y} - \frac{x - y}{x + y}}{1 + \frac{x}{y} \cdot \frac{x - y}{x + y}} \right)
\]
Step 2: Simplify the expression
After simplification, the result simplifies to \( \frac{\pi}{2} \), which is the required value.
Step 3: Conclusion
Thus, the correct answer is \( \frac{\pi}{2} \), which corresponds to option (a).