The value of sin34°+cos64°-cos4° is______
We need to evaluate the expression \( \sin 34^\circ + \cos 64^\circ - \cos 4^\circ \).
1. Simplify Using Trigonometric Identities:
Notice the angles: \( 64^\circ = 90^\circ - 26^\circ \), and we can explore relationships with \( 34^\circ \) and \( 4^\circ \). Use the co-function identity for cosine:
\( \cos 64^\circ = \cos (90^\circ - 26^\circ) = \sin 26^\circ \)
The expression becomes:
\( \sin 34^\circ + \sin 26^\circ - \cos 4^\circ \)
2. Examine the Angles:
Notice that \( 34^\circ - 26^\circ = 8^\circ \), and \( 4^\circ \times 2 = 8^\circ \), suggesting a possible relationship. Let’s try to use sum-to-product identities for the sine terms:
\( \sin 34^\circ + \sin 26^\circ \)
Use the identity \( \sin a + \sin b = 2 \sin \left( \frac{a+b}{2} \right) \cos \left( \frac{a-b}{2} \right) \), where \( a = 34^\circ \), \( b = 26^\circ \):
\( \frac{a+b}{2} = \frac{34^\circ + 26^\circ}{2} = 30^\circ \), \( \frac{a-b}{2} = \frac{34^\circ - 26^\circ}{2} = 4^\circ \)
Thus:
\( \sin 34^\circ + \sin 26^\circ = 2 \sin 30^\circ \cos 4^\circ \)
Since \( \sin 30^\circ = \frac{1}{2} \), we get:
\( 2 \sin 30^\circ \cos 4^\circ = 2 \cdot \frac{1}{2} \cdot \cos 4^\circ = \cos 4^\circ \)
3. Substitute Back:
The original expression is now:
\( \sin 34^\circ + \cos 64^\circ - \cos 4^\circ = (\sin 34^\circ + \sin 26^\circ) - \cos 4^\circ \)
\( = \cos 4^\circ - \cos 4^\circ = 0 \)
4. Verify the Result:
The cancellation suggests the expression simplifies to zero. To confirm, we could compute numerically, but the algebraic simplification is consistent, and the angles’ relationships support this outcome.
Final Answer:
The value of \( \sin 34^\circ + \cos 64^\circ - \cos 4^\circ \) is \( 0 \).
The graph shown below depicts:
The relationship between the sides and angles of a right-angle triangle is described by trigonometry functions, sometimes known as circular functions. These trigonometric functions derive the relationship between the angles and sides of a triangle. In trigonometry, there are three primary functions of sine (sin), cosine (cos), tangent (tan). The other three main functions can be derived from the primary functions as cotangent (cot), secant (sec), and cosecant (cosec).
sin x = a/h
cos x = b/h
tan x = a/b
Tan x can also be represented as sin x/cos x
sec x = 1/cosx = h/b
cosec x = 1/sinx = h/a
cot x = 1/tan x = b/a