Step 1: Expand the sum.
Assume \( a, b, c \) are distinct positive numbers. The sum is:
\[
\frac{1}{1 + \log_a bc} + \frac{1}{1 + \log_b ca} + \frac{1}{1 + \log_c ab}
\]
Step 2: Use identity.
Use: \( \log_a bc = \log_a b + \log_a c \)
Also, recall the identity:
\[
\frac{1}{1 + \log_a bc} = \frac{1}{1 + \frac{\log bc}{\log a}} = \frac{\log a}{\log a + \log bc}
\]
So the full expression becomes:
\[
\frac{\log a}{\log a + \log b + \log c} + \frac{\log b}{\log a + \log b + \log c} + \frac{\log c}{\log a + \log b + \log c} = 1
\]