The value of sin² 51° + sin² 39° is:
We know that \(\sin(90^\circ - x) = \cos(x)\).
Therefore, \(\sin(51^\circ) = \sin(90^\circ - 39^\circ) = \cos(39^\circ)\).
So, sin² 51° + sin² 39° = cos² 39° + sin² 39°
Using the trigonometric identity \(\sin^2(x) + \cos^2(x) = 1\), we get:
cos² 39° + sin² 39° = 1
Answer: (A) 1
Using the complementary angle identity $ \sin(90^\circ - x) = \cos x $, we have:
$$ \sin^2 51^\circ + \sin^2 39^\circ = \sin^2 51^\circ + \sin^2 (90^\circ - 51^\circ) = \sin^2 51^\circ + \cos^2 51^\circ. $$
Using the Pythagorean identity $ \sin^2 x + \cos^2 x = 1 $, we get:
$$ \sin^2 51^\circ + \cos^2 51^\circ = 1. $$
The given graph illustrates: