Step 1: Express \( 22^\circ 30' \) in decimal form.
We know that \( 30' \) (minutes) is \( \frac{30}{60} = 0.5 \) degrees.
Therefore, \( 22^\circ 30' = 22.5^\circ \).
Step 2: Use the half-angle identity for sine.
The half-angle formula for sine is:
\[
\sin \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{2}}
\]
For \( \theta = 45^\circ \), since \( 22.5^\circ = \frac{45^\circ}{2} \), we can use the half-angle identity:
\[
\sin 22.5^\circ = \sqrt{\frac{1 - \cos 45^\circ}{2}}
\]
Step 3: Find \( \cos 45^\circ \).
We know that:
\[
\cos 45^\circ = \frac{\sqrt{2}}{2}
\]
Step 4: Substitute \( \cos 45^\circ = \frac{\sqrt{2}}{2} \) into the half-angle formula.
\[
\sin 22.5^\circ = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}}
\]
Step 5: Simplify the expression.
First, simplify the expression inside the square root:
\[
1 - \frac{\sqrt{2}}{2} = \frac{2}{2} - \frac{\sqrt{2}}{2} = \frac{2 - \sqrt{2}}{2}
\]
Now, divide by 2:
\[
\frac{2 - \sqrt{2}}{4}
\]
Thus, the expression becomes:
\[
\sin 22.5^\circ = \sqrt{\frac{2 - \sqrt{2}}{4}}
\]
Step 6: Rationalize the expression.
The final expression for \( \sin 22.5^\circ \) simplifies to:
\[
\sin 22.5^\circ = \frac{\sqrt{2} - 1}{2\sqrt{2}}
\]
Thus, the value of \( \sin 22.5^\circ \) is \( \frac{\sqrt{2} - 1}{2\sqrt{2}} \).