Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.
The area enclosed between the curve \( y = \sin x, y = \cos x \), \(\text{ for }\) \( 0 \leq x \leq \frac{\pi}{2} \) \(\text{ is:}\)
Bird : Nest :: Bee : __________
Select the correct option to complete the analogy.