To evaluate the limit, we start by considering the expression inside the summation:
\[\frac{\sqrt{n} + 1 - \sqrt{n}}{k(\ln k)^2}\]Simplifying the numerator:
\[\sqrt{n} + 1 - \sqrt{n} = 1\]The expression becomes:
\[\frac{1}{k (\ln k)^2}\]Thus, the original limit can be rewritten as:
\[\lim_{n \to \infty} \sum_{k=2}^n \frac{1}{k (\ln k)^2}\]The sum:
\[\sum_{k=2}^n \frac{1}{k (\ln k)^2}\]is a series that can be compared integrally. To understand its behavior as \(n \to \infty\), consider the integral:
\[\int_2^n \frac{1}{x (\ln x)^2} \, dx\]This integral can be evaluated by the substitution method. Let \(u = \ln x\), then \(du = \frac{1}{x} \, dx\). Thus, the integral becomes:
\[\int_{u=\ln 2}^{u=\ln n} \frac{1}{u^2} \, du = \left[-\frac{1}{u}\right]_{\ln 2}^{\ln n}\]Evaluating the limits:
\[-\frac{1}{\ln n} + \frac{1}{\ln 2}\]As \(n \to \infty\), \(\ln n \to \infty\), therefore:
\[-\frac{1}{\ln n} \to 0\]This implies the integral:
\[\frac{1}{\ln 2} = \text{constant as } n \to \infty\]Thus, the series converges, and the limit of the series:
\[\sum_{k=2}^n \frac{1}{k (\ln k)^2}\]converges to 0 as \(n \to \infty\) since its partial sums approach a finite value.
Hence, the value of:
\[\lim_{n \to \infty} \sum_{k=2}^n \frac{\sqrt{n} + 1 - \sqrt{n}}{k(\ln k)^2}\]is:
\(0\)