Concept:
Let the first three terms of a geometric progression be:
\[
\frac{a}{r},\ a,\ ar
\]
where \( a \neq 0 \) and \( r \neq 0 \).
The product and sum of these terms will be used to determine the range of possible values.
Step 1: Use the given product condition
\[
\frac{a}{r}\cdot a \cdot ar = a^3 = 27
\]
\[
\Rightarrow a=3
\]
Step 2: Write the sum of the first three terms
\[
S=\frac{3}{r}+3+3r
\]
\[
S=3\left(r+\frac{1}{r}+1\right)
\]
Step 3: Find the range of the sum
For all real \( r\neq 0 \),
\[
r+\frac{1}{r}\ge 2 \quad \text{or} \quad r+\frac{1}{r}\le -2
\]
Hence,
\[
S \ge 3(2+1)=9
\quad \text{or} \quad
S \le 3(-2+1)=-3
\]
So, the set of all possible values of \( S \) is:
\[
(-\infty,-3]\cup[9,\infty)
\]
\[
\Rightarrow \mathbb{R}-(a,b)=\mathbb{R}-(-3,9)
\]
Thus,
\[
a=-3,\quad b=9
\]
Step 4: Compute \( a^2+b^2 \)
\[
a^2+b^2=(-3)^2+9^2=9+81=90
\]
Final Answer:
\[
\boxed{90}
\]