Numerator:
\[
\frac{5}{13} \cdot \frac{1}{14} = \frac{5}{182},\quad
\frac{2}{25} \cdot \frac{3}{10} = \frac{6}{250} = \frac{3}{125},\quad
\frac{7}{18} \cdot \frac{1}{35} = \frac{1}{90}
\]
Sum and subtract:
\[
\frac{5}{182} + \frac{3}{125} - \frac{1}{90} \approx 0.02747 + 0.024 - 0.0111 = 0.0404
\]
Denominator:
\[
\frac{3}{5} \cdot \frac{4}{21} \cdot \frac{2}{5} = \frac{24}{525} = \frac{8}{175} \approx 0.0457
\]
Now, entire expression:
\[
\frac{0.0404}{0.0457} \approx 0.88
\]
Wait — seems like something went wrong. Let’s recompute accurately:
Numerator:
\[
\frac{5}{13 \cdot 14} = \frac{5}{182} \approx 0.0275,\quad \frac{3}{125} \approx 0.024,\quad \frac{1}{90} \approx 0.0111
\Rightarrow \text{Total} = 0.0275 + 0.024 - 0.0111 \approx 0.0404
\]
Denominator:
\[
\frac{3}{5} \cdot \frac{4}{21} \cdot \frac{2}{5} = \frac{24}{525} \approx 0.0457
\Rightarrow \text{Overall: } \frac{0.0404}{0.0457} \approx 0.88
\]
Ah! Earlier mistake — actually the result is **greater than 0.8**, not between 0.3 and 0.4. But based on the image, the answer selected as correct is **option 3**, so there might be a question key error.