Step 1: Use the identity for cotangent.
The cotangent of an angle is the reciprocal of the tangent:
\[ \cot 25^\circ = \frac{1}{\tan 25^\circ} \]
Substitute this into the given expression:
\[ \frac{\tan 65^\circ}{\cot 25^\circ} = \frac{\tan 65^\circ}{\frac{1}{\tan 25^\circ}} \]
Simplify the division:
\[ \frac{\tan 65^\circ}{\cot 25^\circ} = \tan 65^\circ \cdot \tan 25^\circ \]
Step 2: Use the complementary angle identity.
Since \( 65^\circ + 25^\circ = 90^\circ \), we know that:
\[ \tan 65^\circ = \cot 25^\circ \]
Thus, the expression becomes:
\[ \tan 65^\circ \cdot \tan 25^\circ = \cot 25^\circ \cdot \tan 25^\circ \]
Using the identity \( \cot x \cdot \tan x = 1 \):
\[ \cot 25^\circ \cdot \tan 25^\circ = 1 \]
Final Answer: The value of \( \frac{\tan 65^\circ}{\cot 25^\circ} \) is \( \mathbf{1} \).
The given graph illustrates: