Question:

The value of \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^2 x}{1 + 2^{-x}} \, dx \] is equal to:

Show Hint

When faced with integrals involving symmetric limits, use substitution to exploit the symmetry and simplify the computation. In this case, symmetry allowed us to reduce the problem.
Updated On: Mar 11, 2025
  • \( \frac{\pi}{3} \)
  • \( \frac{\pi}{4} \)
  • 1
  • \( \frac{1}{2} \)
  • \( \frac{\pi}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are asked to evaluate the following integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^2 x}{1 + 2^{-x}} \, dx. \] Step 1: First, let's check if we can use symmetry. We notice that the limits of integration are symmetric, from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \).
Consider the substitution \( x = -t \), so that \( dx = -dt \). 
The limits of integration will change as follows: when \( x = -\frac{\pi}{2} \), \( t = \frac{\pi}{2} \), and when \( x = \frac{\pi}{2} \), \( t = -\frac{\pi}{2} \). The integral becomes:
\[ I = \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \frac{\cos^2(-t)}{1 + 2^{t}} (-dt). \] Since \( \cos^2(-t) = \cos^2(t) \), the integral simplifies to: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^2 t}{1 + 2^{t}} \, dt. \] This is exactly the same as the original integral.
Step 2: Let's now add the original integral and the transformed integral. By symmetry, we have:
\[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{\cos^2 x}{1 + 2^{-x}} + \frac{\cos^2 x}{1 + 2^{x}} \right) dx. \] Notice that: \[ \frac{\cos^2 x}{1 + 2^{-x}} + \frac{\cos^2 x}{1 + 2^{x}} = \cos^2 x \left( \frac{1}{1 + 2^{-x}} + \frac{1}{1 + 2^{x}} \right). \] Step 3: Simplify the sum inside the parentheses: \[ \frac{1}{1 + 2^{-x}} + \frac{1}{1 + 2^{x}} = \frac{(1 + 2^x) + (1 + 2^{-x})}{(1 + 2^{-x})(1 + 2^x)} = \frac{2 + 2^x + 2^{-x}}{(1 + 2^{-x})(1 + 2^x)}. \] Using the identity \( 2^x + 2^{-x} = 2 \cosh(x \ln 2) \), we get: \[ \frac{2 + 2^x + 2^{-x}}{(1 + 2^{-x})(1 + 2^x)} = 2. \] Step 4: The integral becomes: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^2 x \, dx. \] Now, use the identity \( \cos^2 x = \frac{1 + \cos 2x}{2} \), so the integral becomes: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( 1 + \cos 2x \right) \, dx. \] Step 5: Evaluate the integral: \[ 2I = \left[ x + \frac{\sin 2x}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}. \] The sine term vanishes at both limits, so we are left with: \[ 2I = \left( \frac{\pi}{2} - \left( -\frac{\pi}{2} \right) \right) = \pi. \] Thus: \[ I = \frac{\pi}{4}. \] Thus, the correct answer is option (B).

Was this answer helpful?
0
0