Step 1: Understanding the Concept:
We need to find the indefinite integral of \( \cos^2 x \). Since there is no direct standard formula for integrating \( \cos^2 x \), we must first rewrite it using a trigonometric identity to reduce the power.
Step 2: Key Formula or Approach:
The half-angle identity (or power-reducing formula) for cosine is:
\[ \cos^2 x = \frac{1 + \cos(2x)}{2} \]
We will substitute this into the integral and then integrate term by term.
Step 3: Detailed Explanation or Calculation:
\[ \int \cos^2 x \, dx = \int \frac{1 + \cos(2x)}{2} \, dx \]
\[ = \int \left(\frac{1}{2} + \frac{1}{2}\cos(2x)\right) dx \]
Split the integral into two parts:
\[ = \int \frac{1}{2} \, dx + \int \frac{1}{2}\cos(2x) \, dx \]
\[ = \frac{1}{2}x + \frac{1}{2} \int \cos(2x) \, dx \]
To integrate \( \cos(2x) \), we get \( \frac{\sin(2x)}{2} \).
\[ = \frac{1}{2}x + \frac{1}{2} \left(\frac{\sin(2x)}{2}\right) + C \]
\[ = \frac{x}{2} + \frac{\sin(2x)}{4} + C \]
Step 4: Final Answer:
The value of the integral is \( \frac{1}{4}\sin 2x + \frac{x}{2} + C \).