Step 1: Understanding the Concept:
This is a standard problem in definite integrals that can be solved efficiently using a property of definite integrals, often known as the "King's Rule".
Step 2: Key Formula or Approach:
The property states that for a continuous function \(f(x)\) on \( [0, a] \):
\[ \int_{0}^{a} f(x) \,dx = \int_{0}^{a} f(a-x) \,dx \]
Step 3: Detailed Calculation:
Let the given integral be \( I \).
\[ I = \int_{0}^{\pi/2} \frac{dx}{1 + \sqrt{\tan x}} \]
First, express \( \tan x \) in terms of \( \sin x \) and \( \cos x \):
\[ I = \int_{0}^{\pi/2} \frac{dx}{1 + \frac{\sqrt{\sin x}}{\sqrt{\cos x}}} = \int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \,dx .(1) \]
Now, apply the property \( \int_{0}^{a} f(x) \,dx = \int_{0}^{a} f(a-x) \,dx \) with \( a = \pi/2 \).
\[ I = \int_{0}^{\pi/2} \frac{\sqrt{\cos(\frac{\pi}{2}-x)}}{\sqrt{\cos(\frac{\pi}{2}-x)} + \sqrt{\sin(\frac{\pi}{2}-x)}} \,dx \]
Using the trigonometric identities \( \cos(\frac{\pi}{2}-x) = \sin x \) and \( \sin(\frac{\pi}{2}-x) = \cos x \), we get:
\[ I = \int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \,dx .(2) \]
Now, add equation (1) and equation (2):
\[ I + I = \int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \,dx + \int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \,dx \]
\[ 2I = \int_{0}^{\pi/2} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \,dx \]
\[ 2I = \int_{0}^{\pi/2} 1 \,dx \]
\[ 2I = [x]_{0}^{\pi/2} \]
\[ 2I = \frac{\pi}{2} - 0 = \frac{\pi}{2} \]
\[ I = \frac{\pi}{4} \]
Step 4: Final Answer:
The value of the integral is \( \frac{\pi}{4} \).