We are asked to evaluate the following integral: \[ I = \int_0^\infty \frac{\sin(4x)}{\pi x} \, dx \] Step 1: Recognize the standard integral form.
This integral is a standard form known as the sine integral, often found in the context of Fourier transforms. Specifically, the general form is: \[ \int_0^\infty \frac{\sin(ax)}{\pi x} \, dx = \frac{1}{2} \quad \text{for any constant } a > 0. \] Step 2: Apply the standard result.
In our case, \( a = 4 \). So applying the result, we get: \[ \int_0^\infty \frac{\sin(4x)}{\pi x} \, dx = \frac{1}{2}. \] Thus, the value of the integral is \( 0.50 \).
Step 3: Conclusion.
The value of the integral is approximately 0.50.
A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?