Step 1: Understanding the Concept:
The problem asks for the evaluation of a triple integral over a spherical region. The integrand and the region of integration are both symmetric with respect to the origin and involve the term \( x^2+y^2+z^2 \), which strongly suggests using spherical coordinates.
Step 2: Key Formula or Approach:
The transformation to spherical coordinates is:
- \( x = \rho \sin\phi \cos\theta \)
- \( y = \rho \sin\phi \sin\theta \)
- \( z = \rho \cos\phi \)
The term \( x^2+y^2+z^2 = \rho^2 \).
The volume element is \( dV = dx\,dy\,dz = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \).
The region \( E: x^2+y^2+z^2 \le a^2 \) corresponds to a solid sphere of radius \(a\), so the limits are:
- \( 0 \le \rho \le a \)
- \( 0 \le \phi \le \pi \)
- \( 0 \le \theta \le 2\pi \)
Step 3: Detailed Explanation:
Substitute the spherical coordinates into the integral:
\[ \iiint_E \frac{1}{x^2+y^2+z^2} dx\,dy\,dz = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \frac{1}{\rho^2} (\rho^2 \sin\phi \, d\rho \, d\phi \, d\theta) \]
The \( \rho^2 \) terms cancel out, simplifying the integral significantly:
\[ \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin\phi \, d\rho \, d\phi \, d\theta \]
The integrand now only depends on \( \phi \), so we can separate the integrals:
\[ \left( \int_{0}^{2\pi} d\theta \right) \left( \int_{0}^{\pi} \sin\phi \, d\phi \right) \left( \int_{0}^{a} d\rho \right) \]
Evaluate each integral separately:
- \( \int_{0}^{2\pi} d\theta = [\theta]_{0}^{2\pi} = 2\pi \)
- \( \int_{0}^{\pi} \sin\phi \, d\phi = [-\cos\phi]_{0}^{\pi} = -(\cos\pi - \cos0) = -(-1 - 1) = 2 \)
- \( \int_{0}^{a} d\rho = [\rho]_{0}^{a} = a \)
Multiply the results:
\[ \text{Value} = (2\pi) \times (2) \times (a) = 4\pi a \]
Step 4: Final Answer:
The value of the integral is \( 4\pi a \).