Step 1: Condition for continuity at \(x=0\).
To make the function continuous at \(x=0\), we must define:
\[
f(0)=\lim_{x\to 0}\frac{-e^x+2^x}{x}
\] Step 2: Rewrite expression.
\[
\lim_{x\to 0}\frac{2^x-e^x}{x}
\] Step 3: Use standard limit forms.
We know:
\[
\lim_{x\to 0}\frac{a^x-1}{x}=\ln a
\quad \text{and} \quad
\lim_{x\to 0}\frac{e^x-1}{x}=1
\] Step 4: Split into two limits.
\[
\frac{2^x-e^x}{x}
=\frac{(2^x-1)-(e^x-1)}{x}
=\frac{2^x-1}{x}-\frac{e^x-1}{x}
\] Step 5: Apply limits.
\[
\lim_{x\to 0}\frac{2^x-1}{x}=\ln 2
\]
\[
\lim_{x\to 0}\frac{e^x-1}{x}=1
\]
So:
\[
f(0)=\ln 2 - 1
\] Final Answer:
\[
\boxed{-1+\log 2}
\]