Step 1: Understanding the Question
We need to evaluate a product of sine functions with arguments that are multiples of \(\pi/8\).
Step 2: Key Formula or Approach
We will use trigonometric identities to simplify the product.
Key identities:
\(\sin(\pi - \theta) = \sin\theta\)
\(\sin(\frac{\pi}{2} - \theta) = \cos\theta\)
\(\sin(2\theta) = 2\sin\theta\cos\theta\)
Step 3: Detailed Explanation
Let the expression be E.
\[ E = 2 \sin(\frac{\pi}{8}) \sin(\frac{2\pi}{8}) \sin(\frac{3\pi}{8}) \sin(\frac{5\pi}{8}) \sin(\frac{6\pi}{8}) \sin(\frac{7\pi}{8}) \]
First, use the identity \(\sin(\pi - \theta) = \sin\theta\):
\(\sin(\frac{7\pi}{8}) = \sin(\pi - \frac{\pi}{8}) = \sin(\frac{\pi}{8})\)
\(\sin(\frac{6\pi}{8}) = \sin(\pi - \frac{2\pi}{8}) = \sin(\frac{2\pi}{8})\)
\(\sin(\frac{5\pi}{8}) = \sin(\pi - \frac{3\pi}{8}) = \sin(\frac{3\pi}{8})\)
Substituting these back into the expression:
\[ E = 2 [\sin(\frac{\pi}{8}) \sin(\frac{2\pi}{8}) \sin(\frac{3\pi}{8})]^2 \]
Now, use the identity \(\sin(\frac{\pi}{2} - \theta) = \cos\theta\). Note that \(\frac{\pi}{2} = \frac{4\pi}{8}\).
\(\sin(\frac{3\pi}{8}) = \sin(\frac{4\pi}{8} - \frac{\pi}{8}) = \sin(\frac{\pi}{2} - \frac{\pi}{8}) = \cos(\frac{\pi}{8})\)
Also, \(\sin(\frac{2\pi}{8}) = \sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}\).
Substituting these gives:
\[ E = 2 \left[\sin(\frac{\pi}{8}) \cdot \frac{1}{\sqrt{2}} \cdot \cos(\frac{\pi}{8})\right]^2 \]
\[ E = 2 \left[ \frac{1}{\sqrt{2}} \left(\sin(\frac{\pi}{8})\cos(\frac{\pi}{8})\right) \right]^2 \]
Now, use the identity \(2\sin\theta\cos\theta = \sin(2\theta)\), which means \(\sin\theta\cos\theta = \frac{1}{2}\sin(2\theta)\).
\[ E = 2 \left[ \frac{1}{\sqrt{2}} \cdot \frac{1}{2}\sin\left(2 \cdot \frac{\pi}{8}\right) \right]^2 = 2 \left[ \frac{1}{2\sqrt{2}}\sin\left(\frac{\pi}{4}\right) \right]^2 \]
Substitute \(\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}\):
\[ E = 2 \left[ \frac{1}{2\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \right]^2 = 2 \left[ \frac{1}{4} \right]^2 = 2 \cdot \frac{1}{16} = \frac{1}{8} \]
Step 4: Final Answer
The value of the expression is \(\frac{1}{8}\).