Question:

The value of (13 + 23 + 33 + ........+153) - (1+2+3+.........+15) is

Updated On: Oct 4, 2024
  • 14280
  • 14400
  • 12280
  • 13280
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let's Assume the sum of \(n\) consecutive natural number cubes be \([\frac{n(n + 1)}{2}]^2\)

The sum of \(n\) consecutive natural numbers be \(\frac{n(n + 1)}{2}\)

The Expression given = \((1^3 + 2^3 + 3^3 + ......... + 15^3)\) - \((1 + 2 + 3 + ......... + 15)\)

= From the above = \([ \frac{15(15 + 1)}{2}]^2 - \frac{15 × 16}{2}\)

\([\frac{15 × 16}{2}]^2 - \frac{15 × 16}{2}\)

\((120)^2\) - 120

= 14400 - 120

= 14280 

The correct option is (A): 14280

Was this answer helpful?
0
0