Let's Assume the sum of \(n\) consecutive natural number cubes be \([\frac{n(n + 1)}{2}]^2\)
The sum of \(n\) consecutive natural numbers be \(\frac{n(n + 1)}{2}\)
The Expression given = \((1^3 + 2^3 + 3^3 + ......... + 15^3)\) - \((1 + 2 + 3 + ......... + 15)\)
= From the above = \([ \frac{15(15 + 1)}{2}]^2 - \frac{15 × 16}{2}\)
= \([\frac{15 × 16}{2}]^2 - \frac{15 × 16}{2}\)
= \((120)^2\) - 120
= 14400 - 120
= 14280
The correct option is (A): 14280
List I | List II | ||
A. | \(\sqrt{\frac{0.81\times0.484}{0.064\times6.25}}\) | I. | 0.024 |
B. | \(\sqrt{\frac{0.204\times42}{0.07\times3.4}}\) | II. | 0.99 |
C. | \(\sqrt{\frac{0.081\times0.324\times4.624}{1.5625\times0.0289\times72.9\times64}}\) | III. | 50 |
D. | \(\sqrt{\frac{9.5\times0.085}{0.0017\times0.19}}\) | IV. | 6 |