We calculate the approximate numerical values of the surds:
\[ A = \sqrt[3]{2} \approx 1.26, \quad B = \sqrt{3} \approx 1.73, \quad C = \sqrt[4]{5} \approx 1.50, \quad D = \sqrt[6]{7} \approx 1.40 \]
Now, arranging the surds in increasing order:
\[ A \approx 1.26, \quad D \approx 1.40, \quad C \approx 1.50, \quad B \approx 1.73 \]
Thus, the increasing order is:
\[A < D < C < B\]List I | List II | ||
A. | \(\sqrt{\frac{0.81\times0.484}{0.064\times6.25}}\) | I. | 0.024 |
B. | \(\sqrt{\frac{0.204\times42}{0.07\times3.4}}\) | II. | 0.99 |
C. | \(\sqrt{\frac{0.081\times0.324\times4.624}{1.5625\times0.0289\times72.9\times64}}\) | III. | 50 |
D. | \(\sqrt{\frac{9.5\times0.085}{0.0017\times0.19}}\) | IV. | 6 |