Question:

Match List-l with List-ll

List I

List II

A.\(\sqrt{\frac{0.81\times0.484}{0.064\times6.25}}\)I.0.024
B.\(\sqrt{\frac{0.204\times42}{0.07\times3.4}}\)II.0.99
C.\(\sqrt{\frac{0.081\times0.324\times4.624}{1.5625\times0.0289\times72.9\times64}}\)III.50
D.\(\sqrt{\frac{9.5\times0.085}{0.0017\times0.19}}\)IV.6

Choose the correct answer from the options given below:

Updated On: Dec 30, 2025
  • (A) - (I), (B) - (IV), (C) - (III), (D) - (II)
  • (A) - (I), (B) - (III), (C) - (IV), (D) - (II)
  • (A) - (II), (B) - (IV), (C) - (I), (D) - (III)
  • (A) - (II), (B) (I), (C) - (IV), (D) - (III)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To solve the given problem, we need to match each expression in List I with its corresponding numerical value in List II. We'll do this by calculating each expression one by one.

  1. Expression A: \(\sqrt{\frac{0.81\times0.484}{0.064\times6.25}}\)
    • Calculate the numerator: \(0.81 \times 0.484 = 0.39144\).
    • Calculate the denominator: \(0.064 \times 6.25 = 0.4\).
    • Compute the fraction: \(\frac{0.39144}{0.4} = 0.9786\).
    • Finally, compute the square root: \(\sqrt{0.9786} \approx 0.99\).
    • Thus, Expression A corresponds to II (0.99).
  2. Expression B: \(\sqrt{\frac{0.204\times42}{0.07\times3.4}}\)
    • Calculate the numerator: \(0.204 \times 42 = 8.568\).
    • Calculate the denominator: \(0.07 \times 3.4 = 0.238\).
    • Compute the fraction: \(\frac{8.568}{0.238} = 36\).
    • Finally, compute the square root: \(\sqrt{36} = 6\).
    • Thus, Expression B corresponds to IV (6).
  3. Expression C: \(\sqrt{\frac{0.081\times0.324\times4.624}{1.5625\times0.0289\times72.9\times64}}\)
    • Calculate the numerator: \(0.081 \times 0.324 \times 4.624 = 0.12102912\).
    • Calculate the denominator: \(1.5625 \times 0.0289 \times 72.9 \times 64 = 211.172544\).
    • Compute the fraction: \(\frac{0.12102912}{211.172544} \approx 0.000573\).
    • Finally, compute the square root: \(\sqrt{0.000573} \approx 0.024\).
    • Thus, Expression C corresponds to I (0.024).
  4. Expression D: \(\sqrt{\frac{9.5\times0.085}{0.0017\times0.19}}\)
    • Calculate the numerator: \(9.5 \times 0.085 = 0.8075\).
    • Calculate the denominator: \(0.0017 \times 0.19 = 0.000323\).
    • Compute the fraction: \(\frac{0.8075}{0.000323} = 2500\).
    • Finally, compute the square root: \(\sqrt{2500} = 50\).
    • Thus, Expression D corresponds to III (50).

Therefore, the correct matches are:

  • (A) - (II),
  • (B) - (IV),
  • (C) - (I),
  • (D) - (III).

Thus, the correct answer is: (A) - (II), (B) - (IV), (C) - (I), (D) - (III).

Was this answer helpful?
0
1